Circumcentre of a triangle

RaiseMyMarks.com

Circumcentre

The circumcentre is the point where the three perpendicular bisectors of each side of a triangle intersect. The perpendicular bisector is the the line that is perpendicular to a side of a triangle and bisects that side.

In the diagram above, DG is the perpendicular bisector of $\mathrm{BC} ; \mathrm{FH}$ is the perpendicular bisector of the AB ; EI is the perpendicular bisector of AC .

Example: Find the coordinates of the circumcentre of a triangle whose vertices are $\mathrm{A}(2,-3), \mathrm{B}(8$, $-2)$ and $C(8,6)$.

Solution: The first step is to draw a diagram of the triangle and it's coordinates.

The cirumcentre is the point of intersection of the three perpendicular bisectors of a triangles. If we can find the point of intersection of two of the perpendicular bisectors then we have our circumcentre. We need to find the equations of two of the perpendicular bisectors. Let's find the equation of the perpendicular bisector of $A B$. We need the slope of $A B$ and the midpoint, D, of AB . Let's begin by finding the slope of AB .

$$
\begin{aligned}
\text { Slope of } \mathrm{AB}=m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2+3}{8-2} \\
& =\frac{1}{6} \\
\therefore m_{\perp A B} & =-6
\end{aligned}
$$

Now for the midpoint, D , of AB .

$$
\begin{aligned}
\text { Midpoint of } \mathrm{AB}=D & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{2+8}{2} m \frac{-3-2}{2}\right) \\
& =(5,-2.5)
\end{aligned}
$$

The equation of the perpendicular bisector to AB is given by,

$$
\begin{aligned}
y-y_{2} & =m_{\perp A B}(x-x), \text { where } D(5,-2.5)=\left(x_{0}, y_{0}\right) \\
y+2.5 & =-6(x-5) \\
y & =-6 x+27.5 \text { is the equation of the perpendicular bisector of } \mathrm{AB} .
\end{aligned}
$$

Let's find the equation of the perpendicular bisector to CB.

$$
\begin{aligned}
\text { Slope of } \mathrm{CB}=m_{C B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-6}{8-8} \\
& =\frac{-8}{0} \\
& =\infty \text { or } \mathrm{CB} \text { is a vertical line. } \\
\therefore m_{\perp C B} & =\frac{0}{-8}=0 \text { or, the perpendicular bisector to } \mathrm{CB} \text { is a horizontal line. }
\end{aligned}
$$

The midpont of $\mathrm{CB}=\mathrm{E}$ is given by,

$$
\begin{aligned}
E & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{8+8}{2}, \frac{6-2}{2}\right) \\
& =\left(\frac{16}{2}, \frac{4}{2}\right) \\
& =(8,2)
\end{aligned}
$$

The equation of the perpendicular bisector of CB is,

$$
\begin{aligned}
y-y_{0} & =m_{\perp C B}\left(x-x_{0}\right), \text { where } E=(8,2)=\left(x_{0}, y_{0}\right) \\
y-2 & =0(x-8) \\
y & =2 \text { is the equation of the perpendicular bisector of } \mathrm{CB} .
\end{aligned}
$$

The point of intersection of the two perpendicular bisectors $y=-6 x+27.5$ and $y=2$ is,

$$
\begin{aligned}
2=y & =-6 x+27.5 \\
2 & =-6 x+27.5 \\
6 x & =25.5 \\
x & =\frac{25.5}{6} \\
\therefore x & =4.25 \text { is the x-coordinate of the circumcentre. }
\end{aligned}
$$

Therefore, the circumcentre for $\triangle A B C$ is $(4.25,2)$.

Exercises

Find the circumcentre for the triangle with the following vertices:
a) $(0,4),(3,6),(-8,-2)$
b) $(3,2),(1,4),(5,4)$
c) $(1,6),(5,4),(5,-2)$
d) $(0,3),(-4,-3),(2,-5)$
e) $(6,-1),(4,-5),(-2,-5)$
f) $(-2,4),(2,0),(-2,-4)$

