Centroid of a triangle

Raise My

RaiseMyMarks.com

Centroid

The centroid is the point where all three medians of a triangle intersect. The median is the line that joins a vertex of a traingle to the midpoint of the opposite side to the vertex.

In the diagram above, AB is the median of $\mathrm{BC} ; \mathrm{BE}$ is the median of $\mathrm{AC} ; \mathrm{CF}$ is the median of AB .

Example: Find the centroid of the triangle with vertices $\mathrm{A}(1,2), \mathrm{B}(3,4)$ and $\mathrm{C}(5,0)$.
Solution: The first step is to draw diagram of the triangle and its vertices.

Remember, the centroid is the intersection of the medians of a triangle. So, we only need to find the intersection of two medians of a triangle to find the centroid. Let's find the median of side AB . We need to find the midpoint, F, of AB and then the slope of the line FC. Let's start by finding the midpoint F .

$$
\begin{aligned}
F & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1+3}{2}, \frac{2+4}{2}\right) \\
& =\left(\frac{4}{2}, \frac{6}{2}\right) \\
\therefore F & =(2,3) .
\end{aligned}
$$

We know the median of AB passed through F and C . The slope of the median is then given by,

$$
\begin{aligned}
m_{F C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{0-3}{5-2} \\
& =\frac{-3}{3} \\
& =-1
\end{aligned}
$$

The equation of the line for the median of $A B$ is given by,

$$
\begin{aligned}
y-y_{0} & =m_{F C}\left(x-x_{0}\right) \text { where } c=(5,0)=\left(x_{0}, y_{0}\right) \\
y-0 & =-1(x-5) \\
\therefore y & =-x+5 \text { is the equation of the median of side } \mathrm{AB}
\end{aligned}
$$

Let's find the equation of the median of side AC . We need to find the midpoint, E , of AC .

$$
\begin{aligned}
E & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1+5}{2}, \frac{2+0}{2}\right) \\
& =\left(\frac{6}{2}, \frac{2}{2}\right) \\
\therefore E & =(3,1) .
\end{aligned}
$$

The slope of the median EB is given by,

$$
\begin{aligned}
m_{E B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-1}{3-3} \\
& =\frac{3}{0} \\
& =\infty
\end{aligned}
$$

Therefore, EB is a vertical line. The equation of the median of AC is then given by,

$$
\begin{aligned}
y-y_{0} & =m_{E B}\left(x-x_{0}\right), \text { where } E=(3,1)=\left(x_{0}, y_{0}\right) \\
x & =3 \text { since the equation of the median of } A C \text { is a vertical line. }
\end{aligned}
$$

The centroid is the point of intersection these two medians, $x=3$ and $y=-x+5$.

$$
\begin{aligned}
& y=-x+5 \\
& y=-3+5 \\
& y=2 \text { is the y-coordinate of the centroid. }
\end{aligned}
$$

Therefore, the centroid of $\triangle A B C$ is the point $(3,2)$.

Exercises

Find the centroid of the trianbgles with the following vertices:
a) $(-2,-3),(6,7),(4,1)$
d) $(-6,0),(0,0),(0,3)$
b) $(1,-4),(-2,2),(4,5)$
e) $(-5,0),(2,0),(0,6)$
c) $(0,-2),(4,0),(2,8)$
f) $(-5,0),(0,-4),(1,0)$

