Area of a Triangle using Sine

Raise My

Raisemymarks.com
2020

Area of a triangle using sine

If we consider the triangle above, let's find a formula for it's area. We know that the area of a triangle is

$$
\text { area of triangle }=\frac{1}{2} \text { base } * \text { height }
$$

Using the notation above we have,

$$
\text { area } \begin{aligned}
\Delta A B C & =\frac{1}{2} c h \\
& =\frac{1}{2} c(b \sin A), \quad \text { since } \sin A=\frac{h}{b}
\end{aligned}
$$

Notice that h in the triangle above is the altitude drawn from C.
If we were to draw the altitude from A and then the altitude from B we would get the following formulas for the area of $\triangle A B C$, respectively, as well:

$$
\text { area } \triangle A B C=\frac{1}{2} a c \sin B \text { and area } \triangle A B C=\frac{1}{2} a b \sin C
$$

Exercises

1. Find the area of the triangles below.
a)

d)

e)

b)
c)

f)

g)

2. If triangle $\triangle A B C$ has area $150 \mathrm{~cm}^{2}$, find the value of x.

3. Given the triangle below
a) Find the area of $\triangle A B C$ using (i) Angle A (ii) Angle C
b) Show that

$$
\frac{a}{c}=\frac{\sin A}{\sin C}
$$

4. Find the area of a parallelogram with sides 6.4 cm and 8.7 cm and one interior angle 64°.
5. Triangle $P Q R$ has $\angle P Q R=\theta, P Q=10 \mathrm{~m}, Q R=12 \mathrm{~m}$ and the area of the triangle is $30 \mathrm{~m}^{2}$. Find the possible values of θ.
6. Triangle $A B C$ has $A B=13 \mathrm{~cm}$, and $B C=17 \mathrm{~cm}$ and area is $73.4 \mathrm{~cm}^{2}$. Find the value of $\angle A B C$.

